Name:

ANSWERS.

Class:

Communication Successful Partnership

Solving Problem Together

Collaboration

Question 01

In function notation, y = 2x + 3 becomes

Circle one →

$$f(x) = 2x + 3$$

$$f(y) = 2x + 3$$

$$0 = 2x + 3$$

Question 02

In function notation, how to do you say "f(x) = 2x+3"

Circle one →

"f of x equals two x plus three"

"f x equals two x plus three"

Question 03

Part A

For an equation to be a function, every x (input) has ______ y (output)

Circle one →

Infinite

zero

vending machine metaphor still works! only one

Part B

In function notation, every x (input) has ______ f(x) (output)

Circle one →

Infinite

zero

only one

Algebra 4-1

Question 04

Given that f(x) = 6x - 2, evaluate the function for f(4).

Question 05

Given that f(x) = 6x - 2, find the value of x for which f(x) = 4.

$$f(x) = 6x - 2$$

 $4 = 6x - 2$
 $+2$
 $6 = 6x$

Question 06

Given that $g(m) = m^2 - m$, evaluate the function for g(-5).

Question 07

Given that j(q) = q + 2, evaluate the function for j(5).

$$j(q) = q + 2$$

 $j(s) = s + 2$

Question 08

Given that j(q) = q + 2, find the value of x for which j(q) = 5.

